
End-to-End Network QoS via Scheduling of Flexible
Resource Reservation Requests

Sushant Sharma Dimitrios Katramatos Dantong Yu
Computational Science Center

Brookhaven National Laboratory, Upton, NY 11705

ABSTRACT
Modern data-intensive applications move vast amounts of data be-
tween multiple locations around the world. To enable predictable
and reliable data transfers, next generation networks allow such ap-
plications to reserve network resources for exclusive use. In this
paper, we solve an important problem (called SMR3) to accommo-
date multiple and concurrent network reservation requests between
a pair of end sites. Given the varying availability of bandwidth
within the network, our goal is to accommodate as many reserva-
tion requests as possible while minimizing the total time needed to
complete the data transfers. First, we prove that SMR3 is an NP-
hard problem. Then, we solve it by developing a polynomial-time
heuristic called RRA. The RRA algorithm hinges on an efficient
mechanism to accommodate large number of requests in an iter-
ative manner. Finally, we show via numerical results that RRA
constructs schedules that accommodate significantly larger number
of requests compared to other, seemingly efficient, heuristics.

Keywords
Scheduling, Resource Reservation, End-to-end QoS

1. INTRODUCTION
Extreme scale scientific computations within collaborative en-

vironments are highly dependent on the availability of data that
they need to process. The data in such environments is usually
distributed among national and international data repositories. As
a result, any scientific data analysis requires frequent and time-
sensitive transfers of large volumes of data from one repository to
another over the network. This fact highlights the extreme impor-
tance of reliable network services. However, the default behavior
of today’s best effort networks is to treat all data flows equally.
This can cause data flows of higher priority and/or urgency to be
adversely impacted by competing flows of lower priority. In dis-
tributed data-intensive environments, such behavior is unwarranted
and can degrade the effective “goodput” of the overall system. Fur-
thermore, such behavior makes it impossible to guarantee any type
of Quality of Service (QoS) which is often required for time sensi-
tive data transfers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC11, November 12-18, 2011, Seattle, Washington, USA
Copyright 2011 ACM 978-1-4503-0771-0/11/11 ...$10.00.

As a first step to alleviate such concerns, next generation re-
search and education networks, such as ESnet [5] and Internet2 [9],
have dedicated large bandwidth links between sites distributed across
distant geographical regions. These networks offer mechanisms
that allow end-site applications to reserve network resources for
their exclusive use. The ability to reserve network resources is en-
abled via software agents within these networks called Inter Do-
main Controllers (IDCs). An example of such an IDC is the On-
demand Secure Circuits and Advance Reservation System (OS-
CARS) [12] used by both ESnet and Internet2.

As a next step in enabling end-to-end QoS guarantees, there is an
evident need for end site tools that can intelligently reserve network
resources on behalf of applications. TeraPaths [10] is an example of
such a network reservation tool. It can communicate with the IDCs
of ESnet and Internet2 to reserve WAN resources. StorNet [7] is
another example of an end-site tool that currently uses TeraPaths
to reserve network resources. Such reservation tools usually have a
dual role: (i) they need to act as an end-site domain controllers to
reserve end-site local area network resources, and (ii) they need to
act as resource brokers of Wide Area Network (WAN) by commu-
nicating with IDCs to reserve required WAN resources. Our focus
in this paper is to enable end site tools in performing the second
role more efficiently.

In this paper, we address the issue of intelligently scheduling
resource reservation requests from the perspective of an end-site
network reservation tool. We consider a common but important
scenario, where the end sites are generating multiple/concurrent re-
source reservation requests. Currently, the most common mecha-
nism to handle multiple reservation requests is to try and reserve
the requests in some order (usually the order in which they ar-
rive). As we show in this paper, in the presence of multiple reserva-
tion requests, we can significantly improve the performance if we
schedule the requests intelligently instead of trying to accommo-
date them one by one in the order of arrival (or some other naive
sequence). We have developed an algorithm that can construct an
efficient schedule for multiple/concurrent requests between a pair
of end sites. Furthermore, we focus on the requests that are flexible
in nature, i.e., the requests can specify an upper limit on the max-
imum usable bandwidth and a flexible time duration during which
the request needs to be satisfied. Our developed solution proce-
dure efficiently exploits the flexibility that exist in the reservation
requests. It does so by following a novel approach in which the end-
site reservation tools request the IDC of the WAN for the available
network resources. IDCs of the next generation WANs will soon
have the ability to provide such availability information to the end-
site reservation tools on request [13]. Once such availability infor-
mation is communicated to the reservation tools, this information
can now be used along with the flexibilities in the requests to con-

struct an intelligent schedule of requests. We plan to integrate the
developed scheduling algorithm into the TeraPaths network reser-
vation tool. Our simulation results show that the overall system
performance will be increased significantly once the developed al-
gorithm is incorporated within TeraPaths.
Paper Organization. The rest of the paper is organized as fol-
lows. In Section 2, we describe our problem in detail. Section 3
shows the proof of NP-hardness for our problem. In Section 4, we
provide the description of the algorithm that we have developed,
and Section 5 presents the simulation results. Section 6 discuss
some related work, and Section 7 concludes the paper.

2. PROBLEM DESCRIPTION
In this section, we give the description of our problem using a

motivational example.
Figure 1 shows a simple scenario where the network can reserve

a bandwidth of 10 Gb/s between two end sites. This bandwidth
availability is assumed to be on a pre-selected path between two
end sites. We assume that such a path is already given, and con-
struction of path is not in the scope of this paper. Next, the rate at
which the data can be read from/written to the storage device on
an end host is limited to 8 Gb/s. In this scenario, it is advisable to
reserve a maximum of 8 Gb/s of bandwidth along the network path.
A single reservation request between two end sites includes (i) the
maximum bandwidth that the end sites can support (e.g., 8 Gb/s in
the above example), (ii) the amount of data that needs to be trans-
ferred, and (iii) the start and end times between which the end sites
needs the data transfer to begin and finish. As an example, the time
varying maximum bandwidth availability of the network between
the two end sites of Fig. 1 is shown in Fig. 2. This end-site to end-
site bandwidth availability graph is a step function, with different
available bandwidth between different time intervals (or steps). For
Fig. 2, the available end-to-end bandwidth for time interval [1−3] is
4 Gb/s, and for the interval [3−7], the available bandwidth becomes
8 Gb/s (say due to termination of some other network flows within
the network). Now assume that end site 1 wants to make two reser-
vations between itself and end site 2, and both of these reservations
can support the maximum bandwidth of 8 Gb/s. Assume that the
start and end times for both the reservations is 1 and 7 secs respec-
tively. Furthermore, assume that both reservations need to transfer
16 Gb of data. Once a reservation is confirmed for a request, the
allocated bandwidth for that reservation remains fixed for its dura-
tion (similar to what happens with a reservation in ESnet [5] and
Internet2 [9]). Next, given the bandwidth availability information
between two end-sites and the details of the reservation requests,
our objective is to schedule the data transfers for all the requests (if
possible). The schedule should be able to finish the data transfers
for all reservations within the requested time window and at the
same time optimize a certain objective function. Without an objec-
tive function, there could be multiple feasible schedules that will
accommodate the requests. Figure 3 shows two feasible schedules
for the above example. We can see that the schedule in Fig. 3(a) is
optimal if we want to finish the data transfers as early as possible,
and the schedule in Fig. 3(b) is optimal if we want to minimize the
total data transfer time.

From the above example, it is easy to see that finding a feasible
and optimal schedule becomes much more challenging if the band-
width availability graph contains many more variations. Further-
more, the problem becomes even more challenging if we introduce
the following four generalizations: (i) the requested start and end
times for different reservations can be different, (ii) the amount of
data that needs to be transferred for every reservation can also be
different, (iii) the maximum bandwidth that a particular reservation

Figure 1: An example scenario.

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6 7

Figure 2: Bandwidth availability graph.

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6 7

Reservation 1

Reservation 2

(a) Solution 1.

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6 7

Reservation 1 Reservation 2

(b) Solution 2.

Figure 3: Two feasible schedules.

can use may vary from one reservation to another, and (iv) there are
multiple reservation requests that need to be scheduled.

In this paper, we consider all these generalizations and solve
the scheduling problem with two goals: (i) accommodate as many
reservation requests as possible (all the requests in best case), and
(ii) minimize the sum of total times that is required to transfer data
for all accommodated requests. We name our problem as SMR3

(Scheduling Multiple Resource Reservation Requests).

3. PROBLEM COMPLEXITY
In this section, we prove the NP-hardness of our SMR3 prob-

lem. We consider a known NP-hard variation of the generalized
assignment problem (GAP), and convert an instance of this GAP
into a special instance of our problem in polynomial time. We first
describe the special instance of our SMR3 problem, which we call
simple-SMR3.

End Time (secs)

Available Bandwidth (Gb/s)

Start Time

B

Figure 4: Piecewise bandwidth availability graph in simple-
SMR3.

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6

Step 1

Step 2

Step 3
AR-1

AR-2
AR-3

0 7

Figure 5: An example showing accommodating regions.

In simple-SMR3, all reservation requests have same start and
end times, same values for the maximum bandwidth that they can
use, but different amounts of data that they need to transfer. The
bandwidth availability curve in simple-SMR3 is a piecewise linear
function. An example of this is shown in Fig. 4. The available
bandwidth during all intervals is exactly the same as the maximum
bandwidth requested in the individual reservation requests. How-
ever, the time duration of every interval in which the bandwidth
is available can be different. We can make two important observa-
tions from the definition of simple-SMR3. First, in any solution, the
time taken to complete the data transfer for a particular request will
be same irrespective of the interval in which it is scheduled. This
is because all intervals have the same amount of bandwidth avail-
able for every request. As a consequence, every feasible schedule
will have the same total time taken to transfer data for all reserva-
tion requests. Second, for the simple-SMR3 problem, the objective
of finding a feasible schedule with minimum data transfer time is
now reduced to finding just a feasible schedule. We now have the
following lemma.

LEMMA 1. The simple-SMR3 problem is an NP-hard problem.

PROOF. We consider the following variation of GAP that is known
to be NP-hard [3]:
Given n bins, m items, the capacity of each bin, and the size of
each item: the goal is to determine a feasible assignment of items
to bins such that the sum of the size of items in each bin does not
exceed the bin’s capacity.

An instance of the above problem can be converted into the simple-
SMR3 problem by considering the bins as the intervals in the piece-
wise bandwidth availability graph. The capacity of each bin can be
considered as the area under each interval where the bandwidth is
available. Each item can be considered as the bandwidth reserva-
tion request, where the size of each item is equivalent to the amount
of data that needs to be transferred for that request. Finally, the
goal of finding a feasible assignment of items to bins can be con-
sidered equivalent to finding a feasible schedule of reservation re-
quests within the intervals of the piecewise bandwidth availability

graph.

Based on lemma 1, we now have the following theorem.

THEOREM 1. The SMR3 problem is an NP-hard problem.

PROOF. The SMR3 problem is a generalized version of the simple-
SMR3 problem. As the simple-SMR3 problem is shown to be NP-
hard, SMR3 is also NP-hard.

Given that the SMR3 problem is an NP-hard problem, it is not
possible to develop a polynomial time solution procedure to solve
it optimally. As a result, we develop an efficient algorithm with
polynomial running time that can construct effective solutions.

4. RRA: THE RESOURCE RESERVATION
ALGORITHM

In this section, we develop an algorithm, called RRA (resource
reservation algorithm) to solve our SMR3 problem. We begin by
providing an overview of the RRA in Section 4.1, which is fol-
lowed by the detailed description in Section 4.2. In Section 4.3,
we illustrate the working of the RRA algorithm via an example.
In Section 4.4, we show the polynomial running time of the RRA
algorithm.

4.1 Algorithm Overview
The RRA algorithm runs in iterations. During every iteration,

RRA will try to reserve resources for some of those requests that
can have a large effect on the objective function, i.e., the requests
that can utilize the largest amount of bandwidth. At the end of an it-
eration, there may be few reservation requests that were not accom-
modated in the bandwidth availability graph. The RRA algorithm
then updates the bandwidth availability graph to reflect the current
reservation of requests that were accommodated. This is followed
by more iterations in which RRA tries to reserve resources for the
remaining requests (if any) in the updated bandwidth availability
graph. An obvious question here is: how subsequent iterations can
accommodate the requests if the current one cannot? The answer
will become clear during the detailed description of the algorithm.
If, during some iteration, none of the remaining requests could be
accommodated, then the RRA algorithm will stop. The remain-
ing requests that were not accommodated cannot be satisfied. The
RRA algorithm runs in polynomial time and can construct effective
solutions.

4.2 Detailed Description
In this section, we will provide detailed description of the RRA

algorithm. Every iteration within RRA consists of three phases.
We will describe these phases here.

4.2.1 Phase I: Identify Accommodating Regions
The RRA algorithm begins an iteration by identifying one ac-

commodating region (AR) for every step in the bandwidth avail-
ability graph. For a particular step size, RRA identifies the corre-
sponding AR as a rectangle within the bandwidth availability graph
that (i) contains the step, (ii) has a height that corresponds to the
maximum available bandwidth of that step, and (iii) has the longest
length possible while maintaining the bandwidth. These ARs can
be efficiently constructed using an algorithm proposed in [7]. The
current pending reservation requests needs to be accommodated in
these ARs. Note that an AR for a step may span multiple other
steps, and a single AR may accommodate multiple reservation re-
quests. As an example, Fig 5 shows the ARs for all three steps. The
region AR-1 for step-1 spans from time [0–7], region AR-2 spans

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6

AR-2

0 7

AR-1
AR-3

Request-1

(18 Gb data)

Figure 6: Assigning an AR to a request.

from time [2–5], and region AR-3 spans from time [2–7]. Regions
AR-1 (with bandwidth 4 Gb/s) and AR-3 (with bandwidth 6 Gb/s)
are spanning multiple time steps, and their height is correspond-
ing to the bandwidth of their respective time steps. Region AR-2
(with bandwidth 8 Gb/s) spans only step-2 because the bandwidth
of adjacent steps 1 and 2 is less than that of step-2.

4.2.2 Phase II: Initial Assignment
After identifying all ARs, the next step in the RRA algorithm

is to assign individual requests to these ARs. In order to accom-
plish this, for every request ρi, RRA identifies the AR that can
finish the request in the shortest amount of time (while satisfying
the start and end time requirements of the request). In case there
are multiple ARs that can finish the request in shortest time, RRA
will assign the AR with smallest bandwidth to request ρi. This will
ensure that the ARs with excessive bandwidth availability can be
used by requests that can utilize such large bandwidth. Figure 6
shows an example where Request-1 with 18 Gb of data can utilize
a maximum bandwidth of 6 Gb/s with earliest start time and com-
pletion deadline as 0 and 7 respectively. It also shows all three ARs
that fall within the start and end time requirements of the request.
Out of the three ARs, only two, i.e., AR-2 with 8 Gb/s and AR-3
with 6 Gb/s, can satisfy Request-1 in 3 secs. AR-1 with 4 Gb/s
will require 4.5 secs to satisfy the request. In this case, the RRA
algorithm will assign AR-3, i.e., the AR with minimum bandwidth
among the two best ARs, to Request-1. If a certain request can-
not be accommodated inside any AR, then that request can not be
satisfied and will be removed from further consideration.

A situation is possible where none of the available ARs is as-
signed to more than one reservation requests, and none of the re-
quests gets assigned to overlapping ARs. In such a situation, the
current initial assignment is considered as a feasible assignment.
However, it is also possible that some ARs (overlapping/non-overlapping)
get assigned to multiple reservation requests (e.g., see Fig. 7). In
such a scenario, the RRA algorithm needs to make sure that the
current assignments are indeed feasible, i.e., whether all/few of the
requests can be accommodated inside the assigned RAs.

4.2.3 Phase III: Ensuring Feasibility
This is the most important phase of the RRA algorithm. The

goal of this phase is to determine whether the assigned ARs can
accommodate the requests to which they were assigned. Further-
more, this phase also calculates the actual bandwidth and the start
and end times that will be assigned to each request that can be ac-
commodated. For this phase, RRA needs to maintain the following
information for every identified AR: (i) the start time of the AR,
(ii) the end time of the AR, (iii) a list of other overlapping ARs,
and (iv) all the requests to which it was assigned. The RRA al-
gorithm will then iterate through the ARs one by one. It is likely

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6

Step 1

Step 2

Step 3

AR-3

0 7

Request 2Request 1

(a) AR assigned to multiple requests.

Time (secs)

Available Bandwidth (Gb/s)

8

4

1 2 3 4 5 6

Step 1

Step 2

Step 3

AR-2

0 7

Request 3

(b) Assignment of AR-2 (to Request 3) that overlaps with AR-3
(already assigned to two requests).

Figure 7: An example illustrating the need for feasibility check.

that the ARs with large bandwidth can complete the requests in
less amount of time. As a result, for the benefit of the objective,
the RRA algorithm will iterate through the ARs in a decreasing
order of bandwidth values (ties are broken randomly). For every
AR considered, the goal is to see if it can accommodate all the re-
quests to which it was assigned. If not, then the goal should be
to accommodate as many as possible. Furthermore, once a request
is accommodated inside an AR, the size of other overlapping ARs
should be adjusted as follows. If the accommodated request splits
some overlapping AR into left and right portions, then the larger
portion will be retained, and the smaller portion will be removed
from that AR. Note that, if needed, the available bandwidth in the
removed portion can be taken into consideration during the next
iteration of the RRA algorithm.

To accommodate the requests within an AR, the RRA algorithm
follows a greedy approach. It will iterate over the requests in in-
creasing order of starting times, breaking ties randomly. The rea-
son to iterate in increasing order of starting times is to reduce the
amount of time gaps between accommodated requests within the
AR.

To understand the processing of each request within the iteration,
we use the following notation. We denoteR = {ρ0, ρ1, · · · , ρN -1}
as the set of all N requests. For request ρi, denote the maximum
bandwidth that can be used as B(ρi) b/s, the requested start time
before which the data transfer should not start as S(ρi), the re-
quested end time by which the data transfer should complete as
C(ρi), and the amount of data that need to be transferred as D(ρi)
bits. For request ρi, denote the actual start time of data transfer in
a solution as s(ρi), the actual bandwidth that was reserved for ρi
as b(ρi) b/s. The actual completion time for ρi can be calculated

as c(ρi) = s(ρi) +
D(ρi)
b(ρi)

. For each request ρi under the greedy

approach, the RRA algorithm will do the following:

• The starting time of request ρi (i.e., s(ρi)) will be calculated

RRA_Algorithm(Requests Reqs, Steps S) /*S is
the bandwidth availability graph */

1. Use [7] to create a setR of accommodating regions
from S

2. For every request q ∈ Reqs
3. Identify ARs that can satisfy q in smallest amount

of time
4. Among the identified ARs, assign the one with

minimum bandwidth to q
5. If there is no identified AR for q, then q cannot be

satisfied and is removed from Reqs
6. Consider each AR r ∈ R in decreasing order of

bandwidth values
7. Consider all requests q ∈ Reqs to which region r

was assigned in the increasing order of earliest
possible start times

8. If q cannot fit in region r, then q cannot be
satisfied in this iteration

9. If q can fit inside region r, then
10. Mark the actual start time of q as the current

start time of region r
11. Assign the bandwidth of r as the actual

bandwidth allotted to q
12. Using the allotted bandwidth and start time,

calculate the finish time of q
13. Update the start time of region r to the finish

time of q
14. For all overlapping regions r̂ partitioned by q
15. Remove the smaller portion of r̂.
16. If the number of requests assigned in the previous step is

not zero
17. Use the C-BAG algorithm to update the bandwidth

availability graph S while considering all the
accommodated requests in Reqs

18. Remove the accommodated requests from Reqs
19. Goto step 1
20. The requests that were not accommodated cannot be

satisfied

Figure 8: Pseudocode of the RRA algorithm.

as the maximum of S(ρi) (earliest possible start time) and
the starting time of the AR. If this value comes out to be
larger than C(ρi) (the completion deadline for the request),
then this request cannot be accommodated during this itera-
tion, and will be considered in the later iterations.

• The bandwidth allotted to request ρi will be calculated as the
minimum of B(ρi) (maximum possible value that the ρi can
support) and the maximum bandwidth available in the AR.

• Using the above values of start time and allotted bandwidth,
the completion time of the request ρi will be calculated. If
the value of completion time exceeds the end time of the AR,
then the request ρi cannot be accommodated during this iter-
ation of the RRA algorithm.

• Finally, if ρi can be accommodated within the AR, then the
start time of AR will be updated to the completion time of
ρi.

Once the algorithm has finished iterating over the requests for a
particular AR, it is possible that there are few requests remaining
that still need to be accommodated. There requests will be consid-
ered during the next iteration of the RRA algorithm. Within this
iteration, the RRA algorithm will now move on to the AR with
next highest bandwidth, and will repeat the greedy approach to fit
the requests to which this AR was assigned.

C-BAG_Algorithm(Requests Reqs, Steps S)

1. Create a new Set
2. Add the actual start and actual end time of the satisfied

requests to the Set
3. Add the start and end times of all the steps in S to

the Set
4. The number of steps in new bandwidth availability graph

will be sizeof(Set) -1
5. Sort the values within the Set in increasing order
6. Initialize i = 0
7. For each time value t in the sorted Set
8. if i < sizeof(Set)
9. Mark t as the beginning of the i-th step in the

new bandwidth availability graph Ŝ
10. If(i > 0)
11. Mark t as the end time of the (i− 1)-th step
12. If t is the start time of some step in s ∈ S
13. Denote the current available bandwidth as B
14. For all the accommodated requests that start at t
15. Denote sum1 as the sum of used bandwidth

values in these requests
16. For all the accommodated requests that end at t
17. Denote sum2 as the sum of used bandwidth

values in these requests
18. Denote U = sum1 − sum2 as the bandwidth in use
19. if i < sizeof(Set)
20. Mark the bandwidth of i-th step in Ŝ as B − U
21. Increment i by one

22. Update S = Ŝ

Figure 9: Pseudocode of the C-BAG algorithm.

4.2.4 Preparing for the next Iteration
An iteration of RRA ends when the RRA algorithm finish iter-

ating through all ARs. At this time, there may be some remain-
ing reservation requests that RRA was not able to accommodate.
The RRA algorithm will now update the bandwidth availability
graph while taking into consideration the current accommodated
requests. We have developed an efficient algorithm, called C-BAG
(Constructing an Updated Bandwidth Availability Graph), that con-
structs an updated bandwidth availability graph given the requests
that are accommodated within the current graph. The details of the
C-BAG algorithm are as follows:

The C-BAG Algorithm. To begin with, the C-BAG algorithm
will calculate the number of steps that will be there in the updated
BAG. To achieve this objective, C-BAG uses an efficient data struc-
ture called Set. The Set data structure is a collection of unique
values. The C-BAG algorithm first inserts the start and end times
of all steps in the current BAG into Set. This is followed by the
insertion of all actual start and end times of the accommodated re-
quests within the current BAG into Set. With an efficient hash
function, the insertion can be made a constant time operation. It
can be verified that the size of Set minus 1 will be the number of
steps in the new updated BAG. The values in Set and the number
of steps in the new BAG are needed for the next operation in the
C-BAG algorithm.

After calculating the number of steps in the new BAG, the C-
BAG algorithm iterates over Set in increasing order of stored val-
ues. Every encountered value in Set marks the beginning of a new
step, and ending of the previous step in the updated BAG. To obtain
the available bandwidth in these steps for the new BAG, the C-BAG
algorithm maintains and updates two variables: (i) the amount of
bandwidth that is currently in use by the accommodated requests
(denoted by BW-USE), and (ii) the bandwidth of the step that is

Time (secs)

Available Bandwidth (Gb/s)

8

1 2 3 4 5 60 7

4

2

6

10

Step 0

Step 1

Step 2

Step 3

(a) Bandwidth availability graph.

Time (secs)

Available Bandwidth (Gb/s)

8

1 2 3 4 5 60 7

4

2

6

10

AR 0

AR 1
AR 2 AR 3

(b) Accommodating regions.

Figure 10: An example.

Table 1: A set of requests.
Data Max BW Earliest Start Completion Deadline

(Gb) (Gb/s) (secs) (secs)

0 10 6 2 7
1 8 6 1 7
2 16 8 2 5
3 12 6 0 7

active at this time in the old BAG (denoted by BW-STEP). For ev-
ery step in the new BAG (i.e., at every encountered time value in
the Set), the amount of bandwidth for this new step is equal to
BW-STEP minus BW-USE.

After constructing a new bandwidth availability graph, the RRA
algorithm will run through the three described phases again. Note
that in this new iteration, an AR that gets assigned to a previously
non accommodated request will be different from ARs in the pre-
vious iteration. This is the reason that a request that may not be
accommodated inside an AR during one iteration may get accom-
modated during some subsequent iteration.

The RRA algorithm stops if it cannot accommodate any requests
during an iteration, or if there are no more remaining requests that
need to be accommodated. Figure 8 shows the pseudo code of the
RRA algorithm, and Fig. 9 shows the pseudo code of the C-BAG
algorithm.

4.3 An Example
In this section, we will walk through an example to illustrate

the workings of the RRA algorithm. Figure 10(a) shows an ini-
tial bandwidth availability graph with four steps. Step-0 spans over
the interval [0-2] with 6 Gb/s bandwidth, step-1 spans [2-4] with
10 Gb/s bandwidth, step-2 spans [4-5] with 4 Gb/s bandwidth, and
step-3 spans [5-7] with 8 Gb/s bandwidth. Table 1 shows the reser-
vation requests that are to be accommodated in the bandwidth avail-
ability graph of Fig. 10(a). The units used in this example are for

Table 2: ARs during Iteration1.
Initial AR Accommodated

0 0 NO
1 0 NO
2 1 YES
3 0 YES

Time (secs)

Available Bandwidth (Gb/s)

8

1 2 3 4 5 60 7

4

2

6

Step 0
Step 1

Step 2

Step 3

(a) Bandwidth availability graph.

Time (secs)

Available Bandwidth (Gb/s)

8

1 2 3 4 5 60 7

4

2

6
AR 1

AR 2

AR 3

(b) Accommodating regions.

Figure 11: Updated steps and regions after the first iteration.

Time (secs)

Available Bandwidth (Gb/s)

8

1 2 3 4 5 60 7

4

2

6

10

Step 0

Step 1

Step 2

Step 3

Request #3

Request #2

Request #0

Request #1

Figure 12: Final solution for Fig. 10(a) and Table 1.

the illustration purpose only. As an example, the time duration can
be in minutes or hours instead of seconds that we have used here.
The first iteration of the RRA algorithm will operate on the initial
bandwidth availability graph of Fig. 10(a).

The first phase in this iteration is to build a set of accommodating
regions for every step in the graph. Figure 10(b) shows the ARs for
the steps in Fig. 10(a).

The second phase, i.e., the initialization phase involves iterating
through the requests and assigning ARs to them. The ARs assigned
to individual requests during the second phase are shown in the
second column of Table 2. Request #0 can take 1.667 seconds to
finish within ARs 0, 1 and 3. However, it will be assigned AR-
0 because the bandwidth of AR-0 is closest to the maximum of 6
Gb/s bandwidth that the request can use. Similarly, requests #1, #2,
and #3 will be assigned ARs 0, 1, and 0 respectively.

For the third phase of this iteration, the RRA algorithm will first

select the AR with the largest available bandwidth, which is AR-1
(see Fig. 10(b)). As there is only one request (i.e., #2) to which this
AR was assigned initially, request #2 will be accommodated in this
AR with starting time of 2, ending time of 4, and bandwidth of 8
Gb/s. At this point, the boundaries of the overlapping ARs will be
adjusted. That is, the end time of AR-0 will be updated to 2, and the
start time of AR-2 will be updated to 4. As there is no other request
to which AR-0 was assigned, the RRA algorithm will move onto
AR-3 that has the next highest bandwidth. However, AR-3 is not
assigned to any request. So, the RRA will move over to the next
AR, i.e., AR-0. Now, there are three requests to which AR-0 was
assigned. The RRA algorithm will iterate over these requests in the
increasing order of their earliest start time possible. That is, it will
first check request #3, which will be accommodated with start time
of 0, end time of 2, and allotted bandwidth of 6 Gb/s. Since the end
time of AR-0 was updated to 2, the remaining two requests cannot
be accommodated within this AR. The RRA will next move over
to the last region, i.e., AR-2. As this AR was not assigned to any
request, the first iteration is completed.

After the first iteration, there are still two requests remaining that
were not accommodated. So, the RRA will update the bandwidth
availability graph taking into consideration the two accommodated
requests. The updated bandwidth availability graph is shown in
Fig. 11(a), and the corresponding ARs are shown in Fig. 11(b).
Following the same approach as the first iteration, the RRA will
accommodate request #1 in AR-3 during this iteration. In the third
iteration, the RRA algorithm will finally accommodate request #0.
The final accommodated requests are shown in Fig. 12.

4.4 Complexity of the RRA Algorithm
In this section, we will show that the RRA algorithm developed

in this paper has polynomial time complexity. We denote the num-
ber of requests that need to be accommodated as N , and the number
of steps in the initial bandwidth availability graph as M . Every it-
eration in RRA runs in three phase. We will analyze these phases
one by one.

Phase I. For the first phase, the accommodating regions can be
identified by using an algorithm [7] that runs in linear time with
respect to the number of steps in the bandwidth availability graph.
However, due to the accommodation of requests, the number of
steps in the graph can increase with every subsequent iteration. In
the worst case, every accommodated request can increase the num-
ber of steps by two. As a result, the running time of the first phase
in worst case can be O(N +M).

Phase II. For the second phase, the RRA algorithm identifies
the best region corresponding to every request. The number of re-
quests can be O(N), and the number of regions in worst case can be
O(N +M) (as calculated for the first phase). Therefore, the worst
case running time of this phase comes out to be O(N · (N +M)).

Phase III. For the third phase, the RRA algorithm iterates over
all ARs, i.e., O(N + M) ARs in worst case. For every AR, it
checks for the feasibility of accommodating O(N) requests within
that AR. As a result, the running time of the third phase is O((N +
M) ·N).

After the third phase, the RRA algorithm constructs a new band-
width availability graph using the C-BAG algorithm. In the worst
case, the number of steps in any bandwidth availability graph can
be O(M + N). The number of accommodated requests can be
O(n). As a result, the cost of sorting all values in Set is O((M +
N) · log(M +N)). The bandwidth for the individual steps in the
new BAG can be calculated in one pass over the sorted values in
Set, i.e., in O(M +N) time. As a result, the overall running time
of C-BAG is O((M +N) log(M +N)).

Table 3: A bandwidth availability graph.
Step # Start Time End Time Available

Bandwidth
(secs) (secs) (Gb)

0 0 29 8.98
1 29 181 9.75
2 181 305 6.28
3 305 309 8.39
4 309 394 2.30
5 394 490 9.81
6 490 592 8.04
7 592 663 3.99
8 663 691 4.07
9 691 815 4.27

10 815 907 7.69
11 907 1106 3.59
12 1106 1211 8.50
13 1211 1411 3.01
14 1411 1566 6.01
15 1566 1577 8.43
16 1577 1746 9.47
17 1746 1875 9.15
18 1875 1944 9.48
19 1944 2028 6.53
20 2028 2059 2.38
21 2059 2084 5.42
22 2084 2251 6.50
23 2251 2293 4.91
24 2293 2351 8.49
25 2351 2530 4.54
26 2530 2606 6.79
27 2606 2626 9.74
28 2626 2728 3.21
29 2728 2842 9.22

The RRA algorithm stops if an iteration cannot accommodate
any reservation request. This means that at least one request is
accommodated during every iteration of the RRA algorithm. As a
result, the number of iterations are limited to O(N). This gives us
the final runtime complexity of the RRA algorithm as O(N · (N +
M+(N ·(N+M))+((N+M) ·N)+(N+M) · log(N+M)),
which can be reduced to O(N3 +N2M).

5. NUMERICAL RESULTS
In this section, we present simulation results to show the effi-

ciency of our RRA algorithm.

5.1 Operation of RRA
To begin with, we construct a schedule of requests using the

RRA algorithm on a sample of randomly generated reservation re-
quests and bandwidth availability graph.

Input. Table 3 shows details of the 30 steps in the bandwidth
availability graph. Column 1 of Table 3 shows the step number,
column 2 shows the start time of the step, column 3 shows the end
time of the step, and the last column shows the amount of band-
width available in the step. Table 4 shows a set of 15 requests that
needs to be accommodated inside the bandwidth availability graph
of Table 3. The first column of Table 4 shows the request number.
Column 2 shows the time in seconds before which data transfer for
this request cannot start. Column 3 shows the time limit by which
the data transfer for this request should finish. Column 4 contains
the maximum bandwidth that this request can use and the last col-
umn shows the amount of data that needs to be transferred for this
request. The final row of Table 3 shows the total amount of data
that needs to be transferred for all the requests as 11329.39 Gb.

Table 4: A set of requests.
Request# Earliest Latest Maximum Data

Start Time End Time Bandwidth
(secs) (secs) (Gb/s) (Gb)

0 364.31 1917.31 2.20 1139.13
1 1028.44 1099.47 5.15 121.84
2 988.20 1823.2 3.22 896.82
3 1707.58 1869.64 8.54 461.26
4 988.64 1078.64 6.91 207.31
5 1156.31 2263.43 8.15 3007.78
6 714.70 1612.70 7.70 2304.95
7 1288.25 1570.84 5.73 539.72
8 1871.83 2719.83 5.47 1545.57
9 1811.35 1926.49 5.64 216.59
10 2657.56 2720.56 5.72 120.09
11 2797.77 2841.03 8.79 126.72
12 2651.57 2681.57 7.30 72.98
13 2363.70 2585.31 4.00 295.43
14 2464.11 2549.11 9.64 273.20

Total Data 11329.39

Output. After providing the steps and requests as an input to
the RRA algorithm, the schedule of the accommodated requests is
shown in Table 5. Column 1 of Table 5 shows the request num-
ber. Columns 2 show the actual start time when this request will
start transmitting the data. Column 3 shows the time when the
data transmission for this request will finish. Column 4 shows the
amount of bandwidth that will be reserved for this request, and the
last column shows the difference between columns 3 and 2, i.e., the
total time for which this request will transmit data. We can see that
requests #5 and #6 were not accommodated in the final schedule.
As a result, these requests are considered as unsatisfied. We can
also see that requests #2 and #7 have overlapping schedules, i.e.,
they will be active at the same time for some duration. The last row
of Table 5 shows the total time needed to complete the data transfer
for all the requests as 1722.49 secs..

5.2 Comparison with other heuristics
We next consider a network setup where the bandwidth availabil-

ity of the network, i.e., the height of each step, and the duration of
each step between two end sites vary randomly. The heights vary
between zero and 10 Gb/s, and the durations vary between zero and
100 seconds. Each reservation request is given a random value for
the earliest start time, the completion deadline, and the maximum
usable bandwidth (which can take on a value between zero and 10
Gb/s). The earliest start times and the completion deadlines are
restricted to the times for which bandwidth availability is known.
Furthermore, for every request, the amount of data that needs to
be transferred is limited by some fraction of a so-called max-data-
value. This max-data-value for a request is the amount of data that
can be feasibly transferred between the earliest start time and the
completion deadline given the maximum usable bandwidth for the
request.

Given the procedure to construct steps and requests, we first gen-
erate a pair of 300 random steps and 150 random requests that need
to be accommodated within these steps. These serve as the input to
the RRA algorithm. The results obtained from the RRA algorithm
for this pair of steps and requests serve as one data point for the
results. We then continue to generate random pairs of steps and
requests, and continue generating schedules using the RRA algo-
rithm. All these subsequent schedules gives us more data points for
the results. Note that the time duration between two consecutive
data points can be different for different pairs. Further, every new

Table 5: Schedule for the requests.
Request# Actual Actual Alloted Time Taken

Start Time End Time Bandwidth
(secs) (secs) (Gb/s) (secs)

0 364.31 881.97 2.20 517.66
1 1046.33 1080.24 3.59 33.91
2 1411.00 1689.33 3.22 278.33
3 1707.58 1761.60 8.54 54.02
4 988.64 1046.33 3.59 57.69
5 N/A N/A N/A N/A
6 N/A N/A N/A N/A
7 1288.25 1482.13 2.78 193.88
8 2059.00 2399.13 4.54 340.13
9 1811.35 1849.73 5.64 38.38

10 2674.28 2711.65 3.21 37.37
11 2797.77 2812.19 8.79 14.42
12 2651.57 2674.28 3.21 22.71
13 2399.13 2473.00 4.00 73.87
14 2473.00 2533.12 4.54 60.12

Total Time 1722.49

��

����

�����

�����

�����

�����

�����

�� �� ��� ��� ��� ��� ��� ��� ��

	�

�
��

�

�

�

��
��

��
��

��
��
��

���� �
����

����

�����

����

Figure 13: Comparison of the number of accommodated re-
quests.

data point has the starting time which is greater than the ending
time of its previous data point.

As a comparison, we also consider the schedules constructed
from following two seemingly efficient heuristics.

First come first serve (FCFS). In this heuristic, the requests are
considered for reservation within the bandwidth availability graph
in the order in which requests are generated. Each request is ac-
commodated in the AR where it can be completed in the shortest
amount of time.

Largest bandwidth first (LBF). In this heuristic, the requests are
considered for reservation within the bandwidth availability graph
in the decreasing order of maximum bandwidth value that the re-
quests can use. A request under consideration is accommodated in
the AR where it can be completed in the shortest amount of time.
It may seem that accommodating requests that can use the largest
bandwidth may reduce the total data transfer time for the accom-
modated requests. However, as the results will show, this is not the
case.

Figure 13 shows the comparison of the number of accommo-
dated requests under RRA, FCFS, and LBF. X-axis shows the data
points, and Y-axis show the cumulative number of requests that
were accommodated under a particular scheme upto every data

��

�����

�����

�����

�����

 ����

!����

"����

�� � ��� � � ��� � � ��� � � ��

����

�����

����
��

��
��
	�
��

�
		
��

��
��
�

������
�����

Figure 14: Comparison of total data transferred under three
schemes.

point. On an average, the number of requests that were accom-
modated under RRA are 75% higher than the LBF scheme, and
33% higher than the FCFS scheme.

Intuitively, one may think that the RRA algorithm may have cho-
sen the requests that have small amount of data to transfer, thereby
increasing the number of accepted requests. However, Fig. 14 shows
that the total amount of data transferred under all the three schemes
is approximately same. Under RRA, the data transferred is 4% less
than that under LBF, and 8% less than that under FCFS.

Next, one may ask that if all the schemes were able to transfer
similar amounts of data, then what is the advantage of RRA? Fig-
ure 15(a) shows that the amount of time taken to transfer total data
under RRA is significantly lower than total time under the other
two schemes. Both FCFS and LBF takes 21% more time than the
time taken under RRA. Furthermore, Fig. 15(b) shows that the ef-
fective bandwidth utilization (the ratio of data transferred and the
time taken to transfer the data) under RRA is largest among all the
three schemes.

To alleviate a practical concern, we calculated the running time
used by the RRA algorithm for the complete simulation on a 2.8
GHz Intel Core i5. The time comes out to be just under 900 milisecs,
which is orders of magnitude smaller than the gains in the data
transfer time due to the RRA algorithm (see Fig. 15(a)).

Discussion. The results show that RRA is clearly a better algo-
rithm than the FCFS scheme. The reason is that RRA benefits from
the additional knowledge about the input that it gets by considering
multiple requests for reservation at the same time. Whereas, the
FCFS algorithm blindly accommodate the requests as they arrive
without taking into consideration any other requests.

The LBF scheme, like RRA, also has the additional knowledge
about the input. However, while accommodating requests, LBF
still accommodates requests one by one in isolation. On the other
hand, instead of accommodating requests in isolation, the RRA
algorithm distributes the requests among accommodating regions,
and then tries to satisfy them. This makes RRA perform much bet-
ter than LBF.

To summarize, our results show that the RRA algorithm can con-
struct schedules that accommodate large number of reservation re-
quests while transferring similar amount of data compared to LBF
and FCFS schemes. Furthermore, the time taken to transfer the data
is much smaller under RRA when compared with time under LBF

��

#���

$���

%���

&���

�����

�� '� ��� �'� #�� #'� (�� ('� $�

����

�����

����

��
	

��	
�

�
��
���

�
��
��
��

��
��

�
	
 ���	�
(a) Total transfer time.

��

����

��

����

��

����

�� �� ��� ��� ��� ��� ��� ��� ��

��
��
��
��
��

��
	

�
��
��

��
��
�

�������
����

�������������

(b) Effective bandwidth.

Figure 15: Comparison of total transfer time and effective
bandwidth under three schemes.

and FCFS schemes.

6. RELATED WORK
A significant amount of research exists in the area of network

QoS. This research can be broadly divided into two main cate-
gories: (i) QoS architectures/routing mechanisms and (ii) resource
reservation tools/protocols. QoS architectures and routing mech-
anisms offer procedures to create network paths that can provide
some kind of QoS between end sites. A comprehensive survey of
QoS/constraint-based routing can be found in [16]. A framework
for QoS-based routing can also be found in [4]. Details of QoS ar-
chitectures such as DiffServ and IntServ can be found in [1] and [2]
respectively. In next generation research and education networks,
such as ESnet [5] and Internet2 [9], these QoS mechanisms are im-
plemented by software agents known as Inter-Domain Controllers
(IDCs). End-site resource reservation tools (see e.g., [10, 7]), on
the other hand, provide mechanisms for applications to obtain an
exclusive end-to-end hold on available resources. The focus of this
work is to develop an algorithm that helps end-site resource reser-
vation tools to efficiently reserve the available network resources.

Similar to our work, there are some efforts that consider the pos-

sibility that reservation requests can be available in advance [8, 14],
or that the reservation requests can be flexible [7, 14]. In [7], the
end-site reservation tool consider the reservation of multiple re-
quests in the order of their arrival. In our results, we have shown
that we can do better by intelligently scheduling multiple requests
instead of considering them one by one according to their arrival
times. Furthermore, for flexible requests, [7] submits a fixed reser-
vation request to the IDCs and gets a response from the controller
for whether that request can be satisfied or not. If the (fixed) request
cannot be satisfied, it is then modified by the tool, and re-submitted
for the reservation. It may require several iterations before a re-
quest is modified in a successful way. This iterative mechanism of
submitting a request may have high overhead in some scenarios.
In [11], multiple requests are again processed sequentially in the
order of their arrival. The most recent work on scheduling network
reservation requests is [14]. In [14], authors studied the scheduling
of multiple data transfer requests as an optimization problem. For
a given list of requests, their admission control is a binary decision:
that is, their optimization problem can only determine whether all
the requests in the list can be accommodated or not. In contrast
to our approach, for a given list of requests, if a particular request
cannot be satisfied, the solution procedure in [14] rejects all the
reservation requests following the rejected request in the list. This
drawback can cause significant drop in the overall performance and
the rejection of many requests that could otherwise be accommo-
dated. The RRA algorithm presented in this paper does not suffer
from such a drawback. RRA selectively rejects the requests that
could not be accommodated, and accept those that can be accom-
modated. Our simulation results show the significant performance
improvements of our approach over the existing sequential and it-
erative approaches of request submission.

7. CONCLUSION
In this paper, we solved an important problem, called SMR3,

to accommodate multiple and concurrent network reservation re-
quests between a pair of end-sites. Given the varying availability
of bandwidth within the network, our goal was to accommodate
as many reservation requests as possible while minimizing the to-
tal time needed to complete the data transfers. We proved that the
SMR3 is an NP-hard problem, and then developed a polynomial-
time heuristic, called RRA, to solve the problem. The RRA al-
gorithm hinges on an efficient mechanism to accommodate large
number of requests in an iterative manner. Finally, via numeri-
cal results, we showed that RRA constructs schedules that accom-
modate significantly larger number of requests compared to other,
seemingly efficient, heuristics. Our simulations have shown that the
RRA algorithm can significantly improve the efficiency of network
reservation tools. As a result, our future plans are to incorporate
the RRA algorithm into existing network reservation tools such as

TeraPaths [10].

Acknowledgments
This work is supported by the Director, Office of Science, Office of
Advanced Scientific Computing Research, of the U.S. Department
of Energy under Contract No. DE-AC02-98CH10886 (to BNL).

8. REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss,

“An architecture for differentiated service,” RFC 2475, 1998.

[2] R. Braden, D. Clark, and S. Shenker, “Integrated services in the
Internet architecture: An overview,” RFC 1633, 1994.

[3] C. Chekuri and S. Khanna, “A PTAS for the multiple knapsack
problem,” in Proc. ACM-SIAM SODA, pp. 213–222, Philadelphia,
PA, USA, 2000.

[4] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework
for QoS-based routing in the Internet,” RFC 2386, 1998.

[5] “Energy sciences network,” URL:http://www.es.net/

[6] M.R. Garey and D.S. Johnson, Computers and intractability, a guide
to the theory of NP-completeness, W.H. Freeman & Co., New York,
1990.

[7] J. Gu, D. Katramatos, X. Liu, V. Natarajan, A. Shoshani, A. Sim,
D. Yu, S. Bradley, and S. McKee, “StorNet: Co-scheduling of
end-to-end bandwidth reservation on storage and network systems
for high-performance data transfers,” in Proc. IEEE INFOCOM,
Workshop on High-Speed Networks, Shanghai, China, April 10–15,
2011.

[8] R.A. Guerin and A. Orda, “Networks with advance reservations: The
routing perspective,” in Proc. IEEE INFOCOM, pp. 118–127,
Tel-Aviv, Israel, March 26–30, 2000

[9] “Internet 2,” URL: http://www.internet2.edu/

[10] D. Katramatos, D. Yu, K. Shroff, S. McKee, and T. Robertazzi,
“TeraPaths: End-to-end network resource scheduling in high-impact
network domains,” International Journal On Advances in Internet
Technology, vol 3, no. 1–2, pp. 104–117, 2010.

[11] S. Naiksatam and S. Figueira, “Elastic reservations for efficient
bandwidth utilization in LambdaGrids,” The International Journal of
Grid Computing, vol. 23, no. 1, pp. 1–22, January 2007.

[12] “ESnet On-demand Secure Circuits and Advance Reservation
System (OSCARS),” URL: http://www.es.net/oscars/

[13] “ARCHSTONE: Advanced resource computation for hybrid service
and topology networks,” URL: http://archstone.east.isi.edu/

[14] K. Rajah, S. Ranka, and Y. Xia, “Advance reservation and
scheduling for bulk transfers in research networks,” to appear IEEE
Transactions on Parallel and Distributed Systems.

[15] H.D. Sherali and W.P. Adams, A reformulation-linearization
technique for solving discrete and continuous nonconvex problems,
Kluwer Academic Publishers, Boston, 1999.

[16] O. Younis and S. Fahmy, “Constraint-based routing in the internet:
Basic principles and recent research,” IEEE Communications
Surveys & Tutorials, vol. 5, no. 1, pp. 2–13, 2003.

[17] L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource reservation
protocol (RSVP) – version 1 functional specification,” RFC 2205,
1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

